

L'attuale approccio clinico al paziente con **Sindrome Mielodisplastica**

Bologna 27 maggio 2017

Il trapianto allogenico: quando e per chi?

Daniela Cilloni (Torino)

Number of allogeneic HCTs for MDS patients 65 years of age in the United States, 2005-2012.

	2005	2006	2007	2008	2009	2010	2011	2012
Related ≥ 65y	18	18	17	23	33	30	49	59
Unrelated ≥ 65y	9	6	18	38	53	54	107	145

Allogeneic Stem Cell Transplantation for Patients Age ≥ 70 Years with Myelodysplastic Syndrome: A Retrospective Study of the MDS Subcommittee of the Chronic Malignancies Working Party of the EBMT

Silke Heidenreich ^{1,*}, Dimitris Ziagkos ², Liesbeth C. de Wreede ^{2,3}, Anja van Biezen ⁴, Jürgen Finke ⁵, Uwe Platzbecker ⁶, Dietger Niederwieser ⁷, Hermann Einsele ⁸, Wolfgang Bethge ⁹, Michael Schleuning ¹⁰, Dietrich W. Beelen ¹¹, Johanna Tischer ¹², Arnon Nagler ¹³, Bertram Glass ¹⁴, Johan Maertens ¹⁵, Lucrecia Yáñez ¹⁶, Yves Beguin ¹⁷, Heinz Sill ¹⁸, Christof Scheid ¹⁹, Matthias Stelljes ²⁰, Arnold Ganser ²¹, Pierre Zachée ²², Dominik Selleslag ²³, Theo de Witte ²⁴, Marie Robin ²⁵, Nicolaus Kröger ¹

Figure 1. HSCT for MDS/sAML patients ages 70 to 79 years. The number of transplantations per year increased over time: 2000-2004, n = 16; 2005-2007, n = 27; 2008-2010, n = 89; 2011-2013, n = 181.

Biology of blood and marrow transplantation 2017

HSCT in MDS : for whom, when and how?

- Selection of patients
- Type of transplant (HSC source)
- Treatment before transplant
- Induction regimens/intensity
- Timing of transplant

For whom?

- Intermediate 2 and high IPSS risk
- Intermediate, high and very high R-IPSS
- Therapy related MDS
- High transfusion requirement

The Indications for Allogeneic Stem Cell Transplantation in Myeloid Malignancies

Lutz P. Müller, Carsten Müller-Tidow

Indication for allogeneic stem cell transplantation in myelodysplastic syndrome*							
Risk (IPSS score)	Indication for allogeneic SCT						
Low (0)	None						
Intermediate-1 (0.5 or 1)	In special cases: high-risk cytogenetics or severe cytopenias						
Intermediate-2 (1.5 or 2)	Standard						
High (2.5 to 3.5)	Standard						
	IPSS						
Veriable	Score						
vanapie	0	0.5	1	1.5	2		
BM blasts	<5	5–10		11–20	21–30		
Cytogenetics	Good	Intermediate	Poor				
Cytopenia	0 or 1	2 or 3					
Cytogenetics	Good	Normal, only del(5q), only del(20q), only –Y					
	Intermediate All others						
Poor Complex with >2 aberrations; anomalies of chromosome 7				nosome 7			

Hematopoietic cell transplantation (HCT)specific comorbidity index

Blood 2005;106:2912-9

Comorbidity	Definitions of comorbidities included in the new HCT-CI	HCT-CI weighted scores
Arrhythmia	Atrial fibrillation or flutter, sick sinus syndrome, or ventricular arrhythmias	1
Cardiac‡	Coronary artery disease,§ congestive heart failure, myocardial infarction, or EF $\leq 50\%$	1
Inflammatory bowel disease	Crohn disease or ulcerative colitis	1
Diabetes	Requiring treatment with insulin or oral hypoglycemics but not diet alone	1
Cerebrovascular disease	Transient ischemic attack or cerebrovascular accident	1
Psychiatric disturbance†	Depression or anxiety requiring psychiatric consult or treatment	1
Hepatic, mild‡	Chronic hepatitis, bilirubin $>$ ULN to 1.5 \times ULN, or AST/ALT $>$ ULN to 2.5 \times ULN	1
Obesity†	Patients with a body mass index $>$ 35 kg/m ²	1
Infection†	Requiring continuation of antimicrobial treatment after day 0	1
Rheumatologic	SLE, RA, polymyositis, mixed CTD, or polymyalgia rheumatica	2
Peptic ulcer	Requiring treatment	2
Moderate/severe renal‡	Serum creatinine $>$ 2 mg/dL, on dialysis, or prior renal transplantation	2
Moderate pulmonary‡	DLco and/or FEV ₁ 66%-80% or dyspnea on slight activity	2
Prior solid tumor‡	Treated at any time point in the patient's past history, excluding nonmelanoma skin cancer	3
Heart valve disease	Except mitral valve prolapse	3
Severe pulmonary‡	DLco and/or $FEV_1 \leq 65\%$ or dyspnea at rest or requiring oxygen	3
Moderate/severe hepatic‡	Liver cirrhosis, bilirubin $>$ 1.5 $ imes$ ULN, or AST/ALT $>$ 2.5 $ imes$ ULN	3

Comorbidity and Disease Status–Based Risk Stratification of Outcomes Among Patients With AML or MDS Receiving Allogeneic Hematopoietic Cell Transplantation

J Clin Oncol 2007;25:4246-54

Effect of comorbidity on survival of MDS patients

Blood 2007;110:#2453

AML HSCT: URD, Sibling Donor, and UCB Survival Peffault de la Tour, 2013 Minnesota, Paris, and Nantes

Age 50-59 y

Age 60-75 y

What about low/intermediate-1 IPSS?

 Life expectancy of patients with Intermediate-1 or low IPSS risk at diagnosis was higher when transplanation was delayed but performed before progression to AML.

A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome

Corey S. Cutler, Stephanie J. Lee, Peter Greenberg, H. Joachim Deeg, Waleska S. Pérez, Claudio Anasetti, Brian J. Bolwell, Mitchell S. Cairo, Robert Peter Gale, John P. Klein, Hillard M. Lazarus, Jane L. Liesveld, Philip L. McCarthy, Gustavo A. Milone, J. Douglas Rizzo, Kirk R. Schultz, Michael E. Trigg, Armand Keating, Daniel J. Weisdorf, Joseph H. Antin, and Mary M. Horowitz

Bone marrow transplantation (BMT) can cure myelodysplastic syndrome (MDS), although transplantation carries significant risks of morbidity and mortality. Because the optimal timing of HLA-matched BMT for MDS is unknown, we constructed a Markov model to examine 3 transplantation strategies for newly diagnosed MDS: transplantation at diagnosis, transplantation at leukemic progression, and transplantation at an interval from diagnosis but prior to leukemic progression. Analyses using individual patient risk-assessment data from transplantation and nontransplantation registries were performed for all 4 International Prognostic Scoring System (IPSS) risk groups with adjustments for quality of life (QoL). For low and intermediate-1 IPSS groups, delayed transplantation maximized overall survival. Transplantation prior to leukemic transformation was associated with a greater number of life years than transplantation at the time of leukemic progression. In a cohort of patients under the age of 40 years, an even more marked survival advantage for delayed transplantation was noted. For intermediate-2 and high IPSS groups, transplantation at diagnosis maximized overall survival. No changes in the optimal transplantation strategies were noted when QoL adjustments were incorporated. For low- and intermediate-1-risk MDS, delayed BMT is associated with maximal life expectancy, whereas immediate transplantation for intermediate-2- and high-risk disease is associated with maximal life expectancy. (Blood. 2004;104:579-585)

© 2004 by The American Society of Hematology

582 CUTLER et al

SCT

Figure 3. Net benefit or loss of overall discounted life expectancy for the 4 IPSS risk groups are shown above and below the x-axis. A net benefit for delaying transplantation is noted for low and int-1 risk groups, whereas any delay in the time to transplantation is associated with a loss in survivorship in the higher risk groups.

Role of Reduced-Intensity Conditioning Allogeneic Hematopoietic Stem-Cell Transplantation in Older Patients With De Novo Myelodysplastic Syndromes: An International Collaborative Decision Analysis

survival benefit of the nontransplantation strategy in low/intermediate-1 IPSS MDS

Adapted from Koreth et al. JCO 2013

Role of Reduced-Intensity Conditioning Allogeneic Hematopoietic Stem-Cell Transplantation in Older Patients With De Novo Myelodysplastic Syndromes: An International Collaborative Decision Analysis

survival benefit of the early RIC transplantation strategy in intermediate-2 and high risk IPSS MDS

Adapted from Koreth et al. JCO 2013

When? Timing of transplantation

immediate transplantation for Int-2/high-risk pts

delayed transplantation for Int1/low risk pts until progression (but before transformation to AML)

Early HSCT is associated with improved outcome

Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome

V Runde¹, T de Witte², R Arnold³, A Gratwohl⁴, J Hermans⁵, A van Biezen⁵, D Niederwieser⁶, M Labopin⁷, MP Walter-Noel⁸, A Bacigalupo⁹, N Jacobsen¹⁰, P Ljungman¹¹, E Carreras¹², HJ Kolb¹³, C Aul¹⁴ and J Apperley¹⁵ on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT)

Bone Marrow Transplantation 1998

HSCT in MDS : for whom, when and how?

- Selection of patients
- Type of transplant (HSC source)
- Treatment before transplant
- Induction regimens/intensity
- Timing of transplant

Stem cell source (PBSC or BM?)

PBSC compared to BM as SC source :

- faster engraftment
- more cGVHD
- lower NRM
- •better 2-yrs EFS

Guardiola et al., Blood 2002 Maris et al. Blood 2003 Deeg et al., Blood 2002

Stem cell donor

- match related donor (MRD)
- match unrelated donor (MUD) 8/8
- match unrelated donor (MUD) 7/8
- Alternative donors?
- Cord blood
- Haploidentical donor

Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS)

Wael Saber,¹ Corey S. Cutler,² Ryotaro Nakamura,³ Mei-Jie Zhang,¹ Ehab Atallah,⁴ J. Douglas Rizzo,¹ Richard T. Maziarz,⁵ Jorge Cortes,⁶ Matt E. Kalaycio,⁷ and Mary M. Horowitz¹

Adjusted probability of transplant-related mortality in adult MDS patients by donor source.

MUD= match unrelated donor MRD= match related donor

Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS)

Wael Saber,¹ Corey S. Cutler,² Ryotaro Nakamura,³ Mei-Jie Zhang,¹ Ehab Atallah,⁴ J. Douglas Rizzo,¹ Richard T. Maziarz,⁵ Jorge Cortes,⁶ Matt E. Kalaycio,⁷ and Mary M. Horowitz¹

Adjusted probability of relapse in adult MDS patients by donor source

MUD= match unrelated donor MRD= match related donor

Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS)

Wael Saber,¹ Corey S. Cutler,² Ryotaro Nakamura,³ Mei-Jie Zhang,¹ Ehab Atallah,⁴ J. Douglas Rizzo,¹ Richard T. Maziarz,⁵ Jorge Cortes,⁶ Matt E. Kalaycio,⁷ and Mary M. Horowitz¹

Adjusted probability of **DFS** in 694 adult MDS patients by donor source.

MUD= match unrelated donor MRD= match related donor

Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS)

Wael Saber,¹ Corey S. Cutler,² Ryotaro Nakamura,³ Mei-Jie Zhang,¹ Ehab Atallah,⁴ J. Douglas Rizzo,¹ Richard T. Maziarz,⁵ Jorge Cortes,⁶ Matt E. Kalaycio,⁷ and Mary M. Horowitz¹

Adjusted probability of **overall survival** in 701 adult MDS patients by donor source.

MUD= match unrelated donor MRD= match related donor

Matched unrelated or matched sibling donors result in comparable outcomes after non-myeloablative HSCT in patients with AML or MDS

M Robin¹, R Porcher², L Adès³, N Boissel⁴, E Raffoux⁴, A Xhaard¹, J Larghero⁵, C Gardin³, C Himberlin⁶, A Delmer⁶, P Fenaux³, H Dombret⁴, G Socié^{1,7} and R Peffault de Latour^{1,7}

Bone Marrow Transplantation (2013), 1–6

Haploidentical bone marrow transplantation in patients with advanced myelodysplastic syndrome

Varaldo Riccardo¹, Raiola Anna Maria¹, Di Grazia Carmen¹, Aquino Sara¹, Beltrami Germana¹, Bregante Stefania¹, Cruciani Fabio¹, Dominietto Alida¹, Ghiso Anna¹, Giannoni Livia¹, Gualandi Francesca¹, Ibatici Adalberto¹, Lamparelli Teresa¹, Marani Carlo¹, Van Lint Maria Teresa¹, Valeria Santini^{2,3}, Bacigalupo Andrea⁴, Angelucci Emanuele^{1,3}

American Journal of Hematology 2017

Pre transplant induction therapy: really needed?

- •Chemotherapy for those with high blast count ?(>10%)
- •Hypomethylating agents before transplant?

Hypomethylating agents and transplant

Patients who discontinue 5AC for various reasons have a median survival of only 5.6 months

When 5AC is discontinued because of progressive disease the median survival is 17 months even after HSCT

In the study by Prébet et al the median survival was not reached in patients transplanted with stable disease at the time when 5AC was stopped

CONCLUSION: for patients who are transplant candidates HCT should be considered while still responding to hypomethylating therapy

Pretransplantation Induction Chemotherapy and Posttransplantation Relapse in Patients with Advanced Myelodysplastic Syndrome

Bart L. Scott,^{1,2} Barry Storer,^{1,2} Michael R. Loken,³ Rainer Storb,^{1,2} Frederick R. Appelbaum,^{1,2} H. Joachim Deeg^{1,2}

¹Fred Hutchinson Cancer Research Center; ²University of Washington School of Medicine; and ³Hematologics Inc., Seattle, Washington

Pretransplantation Induction Chemotherapy and Posttransplantation Relapse in Patients with Advanced Myelodysplastic Syndrome

Bart L. Scott,^{1,2} Barry Storer,^{1,2} Michael R. Loken,³ Rainer Storb,^{1,2} Frederick R. Appelbaum,^{1,2} H. Joachim Deeg^{1,2}

¹Fred Hutchinson Cancer Research Center; ²University of Washington School of Medicine; and ³Hematologics Inc., Seattle, Washington

. Biology of Blood and Marrow Transplantation 11:65-73 (2005)

Damaj et al. Biol Blood and Marrow Transpl 2014

5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation

T Field¹, J Perkins¹, Y Huang², MA Kharfan-Dabaja¹, M Alsina¹, E Ayala¹, HF Fernandez¹, W Janssen¹, J Lancet³, L Perez¹, D Sullivan¹, A List³ and C Anasetti¹

Bone Marrow Transplantation (2010) 45, 255-260

Multicenter study evaluating the impact of hypomethylating agents as bridging therapy to hematopoietic stem cell transplantation in myelodysplastic syndromes

Kim et al . Int J Hemtol 2014

OS and RFS according to HMA treatment group

Kim et al . Int J Hemtol 2014

Azacitidine vs induction chemotherapy before HSCT: Seattle retrospective data in 68 patients

Gerds A.T.et al. Biol Blood Marrow Transpl. 2012

Comparison of Intensive Chemotherapy and Hypomethylating Agents before Allogeneic Stem Cell Transplantation for Advanced Myelodysplastic Syndromes: A Study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research

Biol Blood Marrow Transplant 22 (2016)

Cytogenetics, Donor Type, and Use of Hypomethylating Agents in Myelodysplastic Syndrome with Allogeneic Stem Cell Transplantation

Betul Oran^{1,*}, Piyanuch Kongtim¹, Uday Popat¹, Marcos de Lima¹, Elias Jabbour², Xinyan Lu³, Julien Chen¹, Gabriella Rondon¹, Partow Kebriaei¹, Sairah Ahmed¹, Borje Andersson¹, Amin Alousi¹, Stefan Ciurea¹, Elizabeth Shpall¹, Richard E. Champlin¹

256 MDS patients at the **MD Anderson Cancer Centres** 40 (15.6%) chemotherapy 122 (47.7%) HMA 16 (6.2%) Chemo+HMA

Variable	RI		TRM		EFS		OS	
	HR	P Value	HR	P Value	HR	P Value	HR	P Va
Age, per 10 yr	1.06	.50	1.4	.002	1.3	.002	1.3	.00
WHO histological subtype								
Low/intermediate	Ref		Ref		Ref		Ref	
High risk	2.0	.02	1.0	.90	1.6	.02	1.5	.05
CMML	1.5	.30	1.4	.40	1.6	.10	1.5	.20
MDS-U	1.0	.90	1.4	.20	1.3	.20	1.3	.20
T-MDS	1.4	.10	1.2	.40	1.5	.02	1.5	.01
Cytogenetics by 5-group risk		110		110	110	102	110	101
Very good/good	Ref		Ref		Ref		Ref	
Intermediate	12	70	14	40	14	20	13	30
Poor	1.2	40	12	50	1.1	20	1.5	.50
Very poor	30	< 0001	1.2	.50	3.4	< 0001	33	- 00
MK	5.5	<.0001	1.1	.00	5.4	<.0001	5.5	(
CN	Rof		Pof		Pof		Rof	
MK	1.2	50	1.4	20	1.5	06	1.6	02
MK-	1.2	.30	1.4	.20	1.5	.00	1.0	
	4.1	<.0001	1.2	.50	5.7	<.0001	5.7	(<.00
Revious therapy for MDS	D-f		D-f		D-f		D-f	
Champanala	Ker	70	Ref	20	Ref	20	Kei	20
Chemo only	1.1	.70	1.5	.30	1.4	.20	1.4	.20
HMA only	1.0	.90	1.5	.10	1.3	.20	1.4	.10
Chemo+HMA	.8	.70	1.8	.20	1.2	.50	1.5	.30
Response by IWG at HSCI	D (5.6		5.6		P (
CR	Ref		Ref		Ref		Ref	
AD	.8	.30	1.7	.10	1.1	.50	1.3	.20
Untreated	.8	.50	1.0	.90	.8	.50	.9	.60
Cytogenetic remission								
Yes	Ref		Ref		Ref		Ref	
No	1.2	.60	1.0	.90	1.3	.20	1.5	.10
BM blast at HSCT								
<5%	ref		Ref		Ref		Ref	
25%	2.0	.01	.9	.80	1.6	.006	1.6	.00
(Ferritin leve)								
<u>≤1130</u>	Ref		Ref		Ref		Ref	
>1130	1.0	.80	2.0	.009	1.6	.01	2.0	.00
Missing	1.7	.06	1.2	.60	1.5	.05	1.7	.0.
Stem cell source								
РВ	Ref		Ref		Ref		Ref	
BM	.9	.90	1.4	.20	1.2	.30	1.3	.10
Donor source								
MRD	ref		Ref		ref		Ref	
MUD	.7	20	17	.02	12	.30	14	٥ı
Conditioning regimen	./	.20	1.7	.02	1.2		1.7	.00
MAC	Ref		Ref		ref			
RIC	6	05	2.1	001	12	20	12	A (
Time to transplantation after diagnosis	.0	.05	2.1	.001	1.2	.20	1.2	.40
	Def		Def		no f			
≥ 0 IIIUIIIIS	Rei	02	1.2	50		10	0	1,
>ð IIIUIITIS	.0	.03	1.2	.50	.δ	.10	.δ	.10
Press 2005	ЪĆ		D C		D C		D C	
Before 2005	Ref		Ref		Ref		Ket	
After 2005	.8	.30	.8	.40	.7	.10	.7	.10

Best conditioning regimens

The ideal regimen would have no associated toxicity and prevent relapse in all patients, but....

> the extent of toxicity correlates with conditioning intensity

RIC regimens are associated with minimal toxicity, but they carry a higher risk of relapse than high-intensity regimens

Major advantage of RIC: possibility of applying HCT to older patients, who are unlikely to tolerate high dose therapy. patients more than 60-65 years of age or pts with significant comorbid conditions should receive RIC regimens.

Poor cytogenetyc risk should receive intensification of the conditioning regimen because of the high risk of relapse

Dose-Reduced Versus Standard Conditioning Followed by Allogeneic Stem-Cell Transplantation for Patients With Myelodysplastic Syndrome: A Prospective Randomized Phase III Study of the EBMT (RICMAC Trial)

JCO 2017

Nicolaus Kröger, Simona Iacobelli, Georg-Nikolaus Franke, Uwe Platzbecker, Ruzena Uddin, Kai Hübel, Christof Scheid, Thomas Weber, Marie Robin, Matthias Stelljes, Boris Afanasyev, Dominik Heim, Giorgio Lambertenghi Deliliers, Francesco Onida, Peter Dreger, Massimo Pini, Stefano Guidi, Liisa Volin, Andreas Günther, Wolfgang Bethge, Xavier Poiré, Guido Kobbe, Marleen van Os, Ronald Brand, and Theo de Witte

Conclusion

This prospective, randomized trial of the European Society of Blood and Marrow Transplantation provides evidence that RIC resulted in at least a 2-year relapse-free survival and overall survival similar to MAC in patients with MDS or secondary acute myeloid leukemia.

Kroger JCO 2017

Long-term follow-up of a retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic transplantation from matched related donors in myelodysplastic syndromes

R Martino¹, A Henseler², M van Lint³, N Schaap⁴, J Finke⁵, D Beelen⁶, S Vigouroux⁷, EP Alessandrino⁸, GJ Mufti⁹, JH Veelken¹⁰, B Bruno¹¹, I Yakoub-Agha¹², L Volin¹³, J Maertens¹⁴, R Or¹⁵, V Leblond¹⁶, M Rovira¹⁷, P Kalhs¹⁸, AF Alvarez¹⁹, A Vitek²⁰, J Sierra¹, E Wagner²¹, M Robin²², T de Witte⁴ and N Kröger²³ for the Myelodysplastic Syndrome subcommittee of the Chronic Malignancies Working Party of the European Blood and Marrow Transplantation Group

Bone Marrow Transplantation (2017), 1–6

NRM

Relapse

Bone Marrow Transplantation (2017), 1–6

Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with <10% BM blasts: a report from EBMT

Conv MC=Conventional high-dose myeloablative conditioning regimen HyperMC =hyperintensive myeloablative conditioning regimen IntermRIC= intermediate-intensity conditioning NMA= non-myeloablative or minimal-intensity conditioning

Martino et al. Bone Marrow Transplantation (2013) 48, 761

Conv MC=Conventional high-dose myeloablative conditioning regimen HyperMC =hyperintensive myeloablative conditioning regimen IntermRIC= intermediate-intensity conditioning NMA= non-myeloablative or minimal-intensity conditioning

Martino et al. Bone Marrow Transplantation (2013) 48, 761

		Outcome after				
Prognostic risk factor	Tools to measure risk factors in patients with MDS	Nontransplant interventions, including supportive care	HSCT			
Patient related						
Age (chronological)	Calendar, IPSS-R ²⁰	Age influences prognostic impact of disease-related factors ²⁰	Impact age influenced by other patient- related factors ¹⁵			
Performance status (functional ability)	Karnofsky status ≥ 80%		Better survival after HSCT ¹⁵			
Frailty (reduced physical fitness)	Specific tools have to be tested in HSCT ¹¹⁷		Fit patients better outcome ^{12,16-18}			
Comorbidities	HSCT-specific CI (HCT-CI)14		Low CI better outcome ¹³			
Disease related						
Percentage of marrow blasts	IPSS(-R), WPSS, WHO ^{20,21}	Related to prognosis ^{20,21}	Only impact if <5% marrow blasts ²²			
Cytogenetic risk groups	IPSS(-R), WPSS, CPSS ^{20,21,44}	5 prognostic groups ¹⁹	Only very-poor-risk ²⁹ and monosomal karyotype ³⁰			
Severity of cytopenias	IPSS(-R), WPSS ^{41,42}	IPSS-R better prediction of prognosis compared with IPSS ⁴²	Only very-poor-risk group of IPSS-R prognostic			
Marrow fibrosis	WHO criteria ⁵¹	Severity fibrosis prognostic ⁵¹	Severity fibrosis prognostic52			
Transfusions burden	WPSS ^{41,63}	WPSS ⁴¹	WPSS ⁶⁴			
FCM	ELN FCM score ^{25,27}	ELN FCM score ²⁴	Not validated yet27			
Molecular mutations	No specific tools yet ³⁴	Mutations in RUNX1, U2AF1, ASXL1, TP53, and others: poor prognosis ³⁴	Mutations in TP53, EZH2, ETV6 poor prognostic ^{23,35}			
Disease status (after nontransplant						
treatment interventions)						
ESA failure	High Epo levels, high transfusion intensity ^{6,68}	High Epo levels, high transfusion intensity ^{6,68}	No direct impact reported			
Lenalidomi de failure	Absence of 5q-5	Absence of 5q-5	No direct impact reported			
HMA failure	HMA-therapy-specific risk score ⁷¹	HMA-therapy-specific risk score, ⁷¹ complex karyotype ¹¹⁸ TET2 and TP53 mutations ^{72,73}	Best available treatment after HMA failure, ⁷⁶ but response status prognostic factor			
	MDS-specific risk score ⁴	MDS-specific risk score ⁴	Best available treatment available after failure of first-line ICT, ⁷⁰ but response status and remission duration progressic factor ³¹			
De Witte et al Blood	2017		prognostic factor ³¹			

Table 1. Prognostic risk factors relevant for HSCT eligibility and for outcome after HSCT

De Witte et al. Blood 2017

Prognostic pre-transplant factors in myelodysplastic syndromes primarily treated by high dose allogeneic hematopoietic stem cell transplantation: a retrospective study of the MDS subcommittee of the CMWP of the EBMT

E. M. P. Cremers^{1,13} · A. van Biezen² · L. C. de Wreede² · M. Scholten² · A. Vitek³ · J. Finke⁴ • U. Platzbecker⁵ • D. Beelen⁶ • R. Schwerdtfeger⁷ • L. Volin⁸ • N. Harhalakis⁹ • N. Blijlevens¹⁰ · A. Nagler¹¹ · N. Kröger¹² · T. de Witte¹⁰ b 1.0 units transfused Impact of red blood cell transfusion RBC units transfused atient censored requirement 8,0 overall survival 0.6 0.4 0.2 p = 0.0060,0-10 20 50 30 40 60

time (months)

Ann Hematol (2016) 95:1971–1978

Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation

Matteo G. Della Porta, Anna Galli, Andrea Bacigalupo, Silvia Zibellini, Massimo Bernandi, Ettore Rizzo, Bernardino Allione, Maria Teresa van Lint, Pietro Pioltelli, Paola Marenco, Alberto Bosi, Maria Teresa Voso, Simona Sica, Mariella Cuzzola, Emanuele Angelucci, Marianna Rossi, Marta Ubezio, Alberto Malovini, Ivan Limongelli, Virginia V. Ferretti, Orietta Spinelli, Cristina Tresoldi, Sarah Pozzi, Silvia Luchetti, Laura Pezzetti, Silvia Catricalà, Chiara Milanesi, Alberto Riva, Benedetto Bruno, Fabio Ciceri, Francesca Bonifazi, Riccardo Bellazzi, Elli Papaemmanuil, Armando Santoro, Emilio P. Alessandrino, Alessandro Rambaldi, and Mario Cazzola

Several questions remain to be answered

➢ How intensive does a conditioning regimen need to be in order to allow for engraftment and prevent relapse?

>What intensity will the patient tolerate?

Should the conditioning intensity be adjusted to the disease stage (i.e. the risk of relapse)?

➢Is it beneficial to give pre-HCT "debulking" therapy?

➢Is there a place for post-HCT adjuvant or preemptive therapy?